首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   126篇
  国内免费   1篇
  2022年   5篇
  2021年   19篇
  2020年   10篇
  2019年   23篇
  2018年   24篇
  2017年   20篇
  2016年   39篇
  2015年   63篇
  2014年   84篇
  2013年   212篇
  2012年   144篇
  2011年   171篇
  2010年   111篇
  2009年   107篇
  2008年   178篇
  2007年   147篇
  2006年   140篇
  2005年   146篇
  2004年   136篇
  2003年   152篇
  2002年   138篇
  2001年   32篇
  2000年   32篇
  1999年   51篇
  1998年   37篇
  1997年   42篇
  1996年   30篇
  1995年   26篇
  1994年   17篇
  1993年   31篇
  1992年   31篇
  1991年   24篇
  1990年   11篇
  1989年   17篇
  1988年   11篇
  1987年   20篇
  1986年   11篇
  1985年   15篇
  1984年   17篇
  1983年   22篇
  1982年   14篇
  1981年   12篇
  1980年   14篇
  1978年   9篇
  1977年   9篇
  1976年   9篇
  1975年   10篇
  1973年   5篇
  1971年   5篇
  1970年   6篇
排序方式: 共有2672条查询结果,搜索用时 296 毫秒
101.
The products of several Bacillus strains were investigated on rabbit serum calcium decreasing, oxytocic and toad heart function promoting activities. These products were obtained from the clear supernatant fluid of the culture medium after the cells were removed by centrifugation.

For the production of rabbit serum calcium decreasing substance, Bacillus subtilis K and Bacillus natto No. 8 were found to be usefull, Bacillus megaterium KM, Bacillus cereus var. mycoides and Bacillus subtilis K produced oxytocic principle. Bacillus subtilis K, Bacillus brevis and Bacillus megaterium KM also produced toad heart function promoting factor.

A procedure was developed to obtain the electrophoretically homogenous rabbit serum calcium decreasing substance from culture filtrate of Bacillus subtilis K. The crude substance was obtained as isoelectric precipitate by adjusting the culture filtrate to pH 3.0. The crude substance was purified by gel filtration on a Sephadex G-75 column, isoelectric fractionation and chromatography on DEAE-cellulose column. The purified preparation was shown to be homogenous by Tiselius electrophoresis but was separated into two bands by polyacrylamide electrophoresis. The chemical analysis of this biologically active substance indicated this substance to be a lipoprotein. The substance decreased rabbit serum calcium level about 12% at 6~8hr after intravenous injection (dose; 0.5 mg/kg body weight).  相似文献   
102.
The 1H–13C HMQC signals of the 13CH3 moieties of Ile, Leu, and Val residues, in an otherwise deuterated background, exhibit narrow line-widths, and thus are useful for investigating the structures and dynamics of larger proteins. This approach, named methyl TROSY, is economical as compared to laborious methods using chemically synthesized site- and stereo-specifically isotope-labeled amino acids, such as stereo-array isotope labeling amino acids, since moderately priced, commercially available isotope-labeled α-keto acid precursors can be used to prepare the necessary protein samples. The Ile δ1-methyls can be selectively labeled, using isotope-labeled α-ketobutyrates as precursors. However, it is still difficult to prepare a residue-selectively Leu and Val labeled protein, since these residues share a common biosynthetic intermediate, α-ketoisovalerate. Another hindering drawback in using the α-ketoisovalerate precursor is the lack of stereo-selectivity for Leu and Val methyls. Here we present a differential labeling method for Leu and Val residues, using four kinds of stereo-specifically 13CH3-labeled [U–2H;15N]-leucine and -valine, which can be efficiently incorporated into a protein using Escherichia coli cellular expression. The method allows the differential labeling of Leu and Val residues with any combination of stereo-specifically isotope-labeled prochiral methyls. Since relatively small amounts of labeled leucine and valine are required to prepare the NMR samples; i.e., 2 and 10 mg/100 mL of culture for leucine and valine, respectively, with sufficient isotope incorporation efficiency, this approach will be a good alternative to the precursor methods. The feasibility of the method is demonstrated for 82 kDa malate synthase G.  相似文献   
103.
Tooth root formation begins after the completion of crown morphogenesis. At the end edge of the tooth crown, inner and outer enamel epithelia form Hertwig’s epithelial root sheath (HERS). HERS extends along with dental follicular tissue for root formation. Ameloblastin (AMBN) is an enamel matrix protein secreted by ameloblasts and HERS derived cells. A number of enamel proteins are eliminated in root formation, except for AMBN. AMBN may be related to tooth root formation; however, its role in this process remains unclear. In this study, we found AMBN in the basal portion of HERS of lower first molar in mice, but not at the tip. We designed and synthesized small interfering RNA (siRNA) targeting AMBN based on the mouse sequence. When AMBN siRNA was injected into a prospective mandibular first molar of postnatal day 10 mice, the root became shorter 10 days later. Furthermore, HERS in these mice revealed a multilayered appearance and 5-bromo-2′-deoxyuridine (BrdU) positive cells increased in the outer layers. In vitro experiments, when cells were compared with and without transiently expressing AMBN mRNA, expression of growth suppressor genes such as p21Cip1 and p27Kip1 was enhanced without AMBN and BrdU incorporation increased. Thus, AMBN may regulate differentiation state of HERS derived cells. Moreover, our results suggest that the expression of AMBN in HERS functions as a trigger for normal root formation.  相似文献   
104.
Galectin-9 ameliorates various murine autoimmune disease models by regulating T cells and macrophages, although it is not known what role it may have in B cells. The present experiment shows that galectin-9 ameliorates a variety of clinical symptoms, such as proteinuria, arthritis, and hematocrit in MRL/lpr lupus-prone mice. As previously reported, galectin-9 reduces the frequency of Th1, Th17, and activated CD8+ T cells. Although anti-dsDNA antibody was increased in MRL/lpr lupus-prone mice, galectin-9 suppressed anti-dsDNA antibody production, at least partly, by decreasing the number of plasma cells. Galectin-9 seemed to decrease the number of plasma cells by inducing plasma cell apoptosis, and not by suppressing BAFF production. Although about 20% of CD19−/low CD138+ plasma cells expressed Tim-3 in MRL/lpr lupus-prone mice, Tim-3 may not be directly involved in the galectin-9-induced apoptosis, because anti-Tim-3 blocking antibody did not block galectin-9-induced apoptosis. This is the first report of plasma cell apoptosis being induced by galectin-9. Collectively, it is likely that galectin-9 attenuates the clinical severity of MRL lupus-prone mice by regulating T cell function and inducing plasma cell apoptosis.  相似文献   
105.
Type 2 diabetes mellitus (T2DM) is associated with a high incidence of non-alcoholic fatty liver disease (NAFLD) related to obesity and insulin resistance. Currently, medical interventions for NAFLD have focused on diet control and exercise to reduce body weight, and there is a requirement for effective pharmacological therapies. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are oral antidiabetic drugs that promote the urinary excretion of glucose by blocking its reabsorption in renal proximal tubules. SGLT2 inhibitors lower blood glucose independent of insulin action and are expected to reduce body weight because of urinary calorie loss. Here we show that an SGLT2 inhibitor ipragliflozin improves hepatic steatosis in high-fat diet-induced and leptin-deficient (ob/ob) obese mice irrespective of body weight reduction. In the obese mice, ipragliflozin-induced hyperphagia occurred to increase energy intake, attenuating body weight reduction with increased epididymal fat mass. There is an inverse correlation between weights of liver and epididymal fat in ipragliflozin-treated obese mice, suggesting that ipragliflozin treatment promotes normotopic fat accumulation in the epididymal fat and prevents ectopic fat accumulation in the liver. Despite increased adiposity, ipragliflozin ameliorates obesity-associated inflammation and insulin resistance in epididymal fat. Clinically, ipragliflozin improves liver dysfunction in patients with T2DM irrespective of body weight reduction. These findings provide new insight into the effects of SGLT2 inhibitors on energy homeostasis and fat accumulation and indicate their potential therapeutic efficacy in T2DM-associated hepatic steatosis.  相似文献   
106.
107.
The interruption of vascular development could cause structural and functional abnormalities in tissues. We have previously reported that short‐term treatment of newborn mice with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors induces abnormal retinal vascular growth and patterns. An exposure of neonatal mice to high‐concentration oxygen disturbs normal retinal vascular development. The present study aimed to determine (1) whether vascular abnormalities are observed in the retina of newborn mice exposed to high concentrations of oxygen, and (2) how astrocyte network formation is affected following the exposure to hyperoxia. Newborn (postnatal day 0) mice were exposed to 75% oxygen for 48 or 96 hr. During hyperoxia exposure, VEGF expression decreased, and the onset of retinal vascularization was completely suppressed. After completion of the hyperoxic period, retinal vascularization occurred, but it was delayed in a hyperoxic exposure duration‐dependent manner. In retinas of hyperoxia‐exposed mice, dense capillary plexuses were found, and the number of arteries and veins decreased. The astrocyte network formation was slightly delayed under hyperoxic conditions, and the network became denser in retinas of mice with an episode of hyperoxia. Expression of VEGF levels in the avascular retina of mice that were exposed to hyperoxia was higher than that of control mice. These results suggest that short‐term interruption of the onset of vascular development resulting from the reduction in VEGF signals induces abnormal vascular patterns in the mouse retina. The abnormalities in retinal astrocyte behavior might contribute to the formation of an abnormal retinal vascular growth.  相似文献   
108.

Objectives

To find a novel host for the production of 4-vinylphenol (4VPh) by screening Streptomyces species.

Results

The conversion of p-coumaric acid (pHCA) to 4VPh in Streptomyces mobaraense was evaluated using a medium containing pHCA. S. mobaraense readily assimilated pHCA after 24 h of cultivation to produce 4VPh. A phenolic acid decarboxylase, derived from S. mobaraense (SmPAD), was purified following heterologous expression in Escherichia coli. SmPAD was evaluated under various conditions, and the enzyme’s kcat/Km value was 0.54 mM ?1 s?1. Using intergenetic conjugation, a gene from Rhodobacter sphaeroides encoding a tyrosine ammonia lyase, which catalyzes the conversion of l-tyrosine to p-coumaric acid, was introduced into S. mobaraense. The resulting S. mobaraense transformant produced 273 mg 4VPh l?1 from 10 g glucose l?1.

Conclusion

A novel strain suitable for the production of 4VPh and potentially other aromatic compounds was isolated.
  相似文献   
109.
110.
Reversible infantile liver failure (RILF) is a unique heritable liver disease characterized by acute liver failure followed by spontaneous recovery at an early stage of life. Genetic mutations in MTU1 have been identified in RILF patients. MTU1 is a mitochondrial enzyme that catalyzes the 2-thiolation of 5-taurinomethyl-2-thiouridine (τm5s2U) found in the anticodon of a subset of mitochondrial tRNAs (mt-tRNAs). Although the genetic basis of RILF is clear, the molecular mechanism that drives the pathogenesis remains elusive. We here generated liver-specific knockout of Mtu1 (Mtu1LKO) mice, which exhibited symptoms of liver injury characterized by hepatic inflammation and elevated levels of plasma lactate and AST. Mechanistically, Mtu1 deficiency resulted in a loss of 2-thiolation in mt-tRNAs, which led to a marked impairment of mitochondrial translation. Consequently, Mtu1LKO mice exhibited severe disruption of mitochondrial membrane integrity and a broad decrease in respiratory complex activities in the hepatocytes. Interestingly, mitochondrial dysfunction induced signaling pathways related to mitochondrial proliferation and the suppression of oxidative stress. The present study demonstrates that Mtu1-dependent 2-thiolation of mt-tRNA is indispensable for mitochondrial translation and that Mtu1 deficiency is a primary cause of RILF. In addition, Mtu1 deficiency is associated with multiple cytoprotective pathways that might prevent catastrophic liver failure and assist in the recovery from liver injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号